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Abstract
Motivated by application to quantum physics, anticommuting analogues of
Wiener measure and Brownian motion are constructed. The corresponding Itô
integrals are defined and the existence and uniqueness of solutions to a class
of stochastic differential equations is established. This machinery is used to
provide a Feynman–Kac formula for a class of Hamiltonians. Several specific
examples are considered.

PACS numbers: 0250F, 0365

1. Introduction

Anticommuting variables occur in physics when either a supersymmetry or a BRST symmetry
occurs. In the first place such variables occur as the parameters of each of these two
kinds of symmetry transformation, but they also occur when the operators of the quantized
theory are represented by differential operators on function spaces: the presence of canonical
anticommutation relations means that the functions involved are functions of anticommuting
variables, an idea which goes back originally to work of Martin [1] and ideas of Schwinger [2],
and was extensively developed by Berezin [3] and by De Witt [4]. Anticommuting variables are
not used to model physical quantities directly; their use is motivated by the algebraic properties
of the function spaces of these variables. In application to physics, results which are real or
complex numbers emerge after what has become known as Berezin integration (defined by
equation (5) in section 2), which essentially takes a trace. The approach using anticommuting
variables is particularly useful in the context of supersymmetry and BRST symmetry because
Bose and Fermi (or ghost) degrees of freedom, which are related by symmetry transformations,
are both handled in the same way.

Path integral quantization in this approach has been developed in terms of limits of time-
slicing by a number of authors, starting from the work of Martin [1] with further work by,
among others, Marinov [5]. A clear account of this use of Grassmann variables in fermionic
quantization is given by Swanson [6].

In this paper we investigate a more rigorous, mathematical approach to the path integral
quantization of ghost Hamiltonians by developing anticommuting analogues to various
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constructions in probability theory (such as Brownian motion and stochastic calculus) and
applying these objects to establish a Feynman–Kac formula for a wide family of ghost
Hamiltonians of the kind which occur when quantizing systems in the BRST approach.
These anticommuting analogues are constructed in close parallel to their classical commuting
counterparts, so that the two may readily be combined to give a ‘super’ theory in a geometric
setting. The anticommuting Brownian motion developed here is distinct from that developed
by one of the authors for fermionic quantization [7, 8], essentially because these two classes
of theory have distinct free Hamiltonians.

Other approaches to quantization of fermionic and ghost degrees of freedom have been
considered by several authors: it is not possible to give a full list, but examples are the work
of Gaveau and Schulman [9], Applebaum and Hudson [10] and Hudson and Lindsay [11], and
Kupsch [12]. Closest to the paper presented here is the work of Barnett et al [13, 14] and of
Streater and Hasagawa [15], as will be discussed in more detail in section 4.

Although, as remarked above, the anticommuting variables used in this paper do not
directly model physical quantities, they do provide a ‘classical’ framework for fermions and
ghosts, which have meaning only at the quantum level, and might find application in other
contexts, such as the more exotic diffusions of Metzler et al [16].

2. Anticommuting variables

In this section we briefly describe the space of anticommuting variables from which our
processes are built, together with the key features of the analysis of functions of such variables.
Further details may be found in [8]. The approach taken, using Grassmann algebras, is more
concrete and more particular than strictly necessary; a more abstract approach is possible,
which would be more mathematically economical and elegant, but would not relate in so
direct a way to the standard methods of stochastic calculus.

The basic anticommuting algebra used is the real Grassmann algebra with an infinite
number of generators; this algebra, which is denoted RS, is a superalgebra with RS :=
RS,0⊕RS,1 where RS,0 is the even part, consisting of elements which are a linear combination of
terms each containing a product of even numbers of the anticommuting generators, while RS,1

is the odd part. We will normally consider homogeneous elements, that is elements A which
are either even or odd, with parity denoted by εA so that εA = i if A is in RS,i , i = 0, 1. The
algebra RS is supercommutative, that isAB = (−1)εAεBBA, so that in particular αβ = −βα if
and only if both α and β are odd. We shall not need to be concerned with analysis on this space
directly, and so do not need to specify any norm. Our use of the space will be purely algebraic.

The functions with which we shall principally be concerned, because of their rôle in ghost
quantization, have as domain the space R

0,m
S := (RS,1)

m. A typical element of this space is
η := (η1, . . . , ηm). (It will be assumed thatm is an even number in this paper, although in other
contexts this is not necessarily the case.) We will consider functions on this space which are
supersmooth [4, 17], that is (in this simple context where we consider purely anticommuting
variables) multinomials in the anticommuting variables. These may be written in a standard
form if we introduce multi-index notation: letMn denote the set of all multi-indices of the form
µ := µ1 . . . µk with 1 � µ1 < · · · < µk � m together with the empty multi-index ∅; also let
|µ| denote the length of the multi-index µ, η∅ := 1 (the unit of RS) and ηµ := 1ηµ1 . . . ηµ|µ| .
A supersmooth function is then a function F of the form

F : R
0,m
S −→ RS (η1, . . . , ηm) �→

∑
µ∈Mm

Fµη
µ (1)

where the coefficients Fµ are real or complex numbers.
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Differentiation of multinomial functions of anticommuting variables is defined by linearity
together with the rule

∂ηµ

∂ηj
=

{
(−1)�−1ηµ1 · · · η̂� · · · ηµ|µ| if j = µ� for some �, 1 � � � |µ|
0 otherwise

(2)

wherê indicates an omitted factor.
Functions of anticommuting variables obey the following Taylor theorem, which can be

proved as in the classical case.

Theorem 2.1. If F is a supersmooth function on R
0,m
S and ξ, η are elements of R

0,m
S ,

F(ξ + η)− F(ξ) = ηa1∂a1F(ξ) +
1

2!
ηa2ηa1∂a1∂a2F(ξ)

+ · · · +
1

(n− 1)!
ηan−1 · · · ηa1∂a1 · · · ∂an−1F(ξ)

+
∫ 1

0

(1 − t)n−1

(n− 1)!
ηan · · · ηa1∂a1 · · · ∂anF (ξ + tη) dt. (3)

(Here and later the summation convention for repeated indices is used.) If the number of terms
n is greater than the number of anticommuting variables m this takes the simpler form

F(ξ + η) =
∑
µ∈Mn

ηµ∂µ̃F (ξ) (4)

where ∂µ̃ = ∂µ|µ| . . . ∂µ1 .

Integration of functions of these anticommuting variables is defined algebraically by the
Berezin rule: ∫

B
dmη F(η) = F1...m (5)

where F(η) = ∑
µ∈Mm

Fµη
µ as in (1), so that F1...m is the coefficient of the highest-order term.

The space of supersmooth functions ofm anticommuting variables will be denoted F(m),
and is a 2m-dimensional vector space. A norm on this space is defined by

|F |
G

=
∑
µ∈Mn

|Fµ| (6)

where again F(η) = ∑
µ∈Mm

Fµη
µ as in (1). This norm has the Banach algebra property

|FG|
G

� |F |
G
|G|

G
. (7)

Any linear operatorK on this space has integral kernel taking R
0,m
S × R

0,m
S into RS defined by

Kf (θ) =
∫

B
dmθ K(η, θ)f (θ). (8)

3. Anticommuting probability and stochastic processes

While the standard integral for functions of anticommuting variables, the Berezin integral
defined in equation (5), has no measure-theoretic or ‘limit of a sum’ aspect, it can be used to
build an anticommuting analogue of probability theory by taking the consistency conditions of
the Kolmogorov extension theory as the defining properties, as has been carried out in [7, 8].
The key definition of anticommuting probability space is now given. A restricted form of the
definition, sufficient for this paper, is used, with more details and generality available in the
references cited.



558 S Leppard and A Rogers

Definition 3.1. A (0,m)-anticommuting probability space of weight w consists of:

(a) a finite closed interval [0, T ] of the real line;
(b) for each finite set B = {t1, . . . , tr} with 0 � t1 < · · · < tr � T , a supersmooth function

FB on (R0,m
S )r such that:

(i)
∫

B
dmθ1 · · · dmθr FB(θ1, . . . , θr ) = w (9)

(where θ1, . . . , θr are each elements of R
0,m
S );

(ii) if B = {t1, . . . , tr} and B ′ = {t1, . . . tr−1} then∫
B

dmθr FB(θ1, . . . , θr ) = FB ′(θ1, . . . , θr−1). (10)

Such a space will be denoted ((R0,m
S )[0,T ], {FB}, dµ).

(The conditions (9) and (10) are analogous to the consistency conditions for finite-dimensional
distributions.)

We can now define the notion of random variable on this space; we cannot use conventional
measure theory, but must instead build an explicit limiting process into the definition.

Definition 3.2. A (0, k)-dimensional anticommuting random variable

Gi := (Gir , Br) i = 1, . . . , k (11)

for the anticommuting probability space ((R0,m
S )[0,T ], {FB}, dµ) consists of:

(a) a sequence of defining sets B1, B2, . . . , each a finite subset of [0, T ];
(b) a sequence of supersmooth functions Gr : (R0,m

S )|Br | → R
0,k
S , r = 1, 2, . . . (with

components Gir, i = 1, . . . , k) such that for each i = 1, . . . , k and each multinomial
function H of k variables the sequence

Ir(H) =
∫

B
dmθ1 . . . d

mθ|Br | FBr (θ1, . . . , θ|Br |)H(Gr(θ1, . . . , θ|Br |)) (12)

tends to a limit as r tends to infinity. (Here |Br | denotes the number of elements in the set
Br .)

The limit of Ir(H) is called the (anticommuting) expectation value of H(Gi), and we write

EG[H(Gi)] ≡
∫

dµH(Gi) := lim
r→∞ Ir(H). (13)

The case where there exists some finite numberM such that Bq = BM for all q > M is called
a finitely defined anticommuting random variable.

The definition of a stochastic process is analogous to the conventional one.

Definition 3.3. Let A be an interval contained in [0, T ]. Then a collection

X := {Xt | t ∈ A } (14)

of (0, k)-dimensional random variables on an anticommuting probability space
((R

0,m
S )[0,T ], {FB}, dµ) is said to be a (0, k)-dimensional stochastic process on the space

((R
0,m
S )[0,T ], {FB}, dµ) if for each finite subset Aα of A the collection X := {Xt | t ∈ Aα } is

an anticommuting random variable on this space.

In this paper we shall be concerned with stochastic processes which are built from solutions
of stochastic differential equations.

We end this section with some useful but rather technical definitions starting with a notion
of equality of random variables.
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Definition 3.4. If (Xi) and (Y i) are two (0, k)-dimensional random variables and

EG[H(X)] = EG[H(Y)] (15)

for all multinomial functions H of k variables, then we say they are µ-equal. This is written

Xi =µ Y
i. (16)

The next definition defines convergence of a sequence of random variables.

Definition 3.5. If X is a (0, k)-dimensional random variable, Xr , r = 1, 2, . . . a sequence of
(0, k)-dimensional random variables and

lim
r→∞ |EG[H(Xr)−H(X)]| = 0 (17)

for each multinomial function H then we say that Xr µ-converges to X. This will be denoted

µ− lim
r→∞

Xr = X. (18)

While other kinds of equality and convergence can be defined, these forms are sufficient
for the purposes of this paper since the Feynman–Kac formula is built from expectations of
anticommuting random variables.

4. Anticommuting Brownian motion

The anticommuting Brownian motion process will now be constructed. We start by defining
anticommuting Wiener space, using finite-dimensional marginal distributions built from the
heat kernel of the ‘free’ Hamiltonian for functions of m anticommuting variables. Recalling
that we are assuming that m is even, this Hamiltonian is

HF := 1

2
eij ∂

∂ηi

∂

∂ηj
(19)

where the m×m matrix e in block diagonal form is

e =
 ε . . .

ε

 (20)

with ε =
(

0 1
−1 0

)
. The heat kernel e−HF t (η, η′) of this Hamiltonian is

p(η − η′, t) := (
√
t)m exp

(
eji(η

i − η′i )(ηj − η′j )
2t

)
(21)

as may be verified by observing that p(η − η′, t) satisfies the equation

∂

∂t
p(η, η′, t) = −HF p(η, η′, t) (22)

and reduces to the Grassmann delta function δ(η − η′) := *mi=1(η
i − η′i ) when t = 0.

Anticommuting Brownian motion is now defined to be the anticommuting stochastic
process constructed from this heat kernel in the following way.

Definition 4.1. Anticommuting Wiener space of dimension (0,m) (where m is even)
on the time interval [0, T ] is the anticommuting probability space ((R

0,m
S )[0,T ],

{FB}, dµ) with

F{t1,...,tN }(η1, . . . , ηN) := p(η1, t1)p(η2 − η1, t2 − t1) · · ·p(ηN − ηN−1, tN − tN−1) (23)

for each finite set {t1, . . . , tN } of real numbers for which 0 � t1 < · · · < tN � T .
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It follows immediately from the semigroup property of the heat kernel p(η, η′, t) that the
finite-dimensional marginal distributions Ft1,...,tN satisfy the necessary consistency condition
contained in definition 3.1, and then by direct calculation that the weight of the space is 1.

We now define m-dimensional anticommuting Brownian motion to be the stochastic
process βt defined by this anticommuting probability space, so that for any supersmooth
function H of mN anticommuting variables, where N is a positive integer,

EG[H(βat1 , . . . , β
a
tN
)] =

∫
B

dmθ1 · · · dmθNp(θ1, t1)p(θ2 − θ1, t2 − t1)× · · ·
×p(θN − θN−1, tN − tN−1)H(θ1, . . . , θN). (24)

The following expectations, which will prove useful in subsequent sections, may be
calculated directly from this definition.

EG[βat ] = 0 EG[βat β
b
t ] = eabt

EG[βat1β
b
t2

] = eab min(t1, t2)
EG[(βat2 − βat1)(βbt2 − βbt1)] = eab|t2 − t1|.

(25)

An important consequence of these results is that the process βt has independent increments:

EG[(βat2 − βat1)(βbs2 − βbs1)] = 0 (26)

if t2 > t1 � s2 > s1.
These results show that anticommuting Brownian motion has the same covariance as the

Itô Clifford process introduced by Barnett et al [13, 14] and further studied by Streater and
Hasagawa [15]. From this point of view we are providing a concrete model of these processes,
and applying them in a novel way to path integration in ghost quantum mechanics.

The results (25) can be further extended if we introduce the notion of adapted process in
close analogy with the standard definition.

Definition 4.2. A stochastic process Ft , t ∈ [0, T ] on m-dimensional anticommuting Wiener
space such that for each t in [0, T ]Ft is a function of {βs |0 � s � t} is said to be [0, t]-adapted.

(The time interval, [0, t], may be omitted when the context makes it clear.) As in the classical
case, it can then be shown by direct calculation that, if Ft is a [0, t]-adapted process and
0 � s < u � T , then

EG[Fas (β
b
u − βbs )] = 0

EG[Fas (β
b
u − βbs )(βcu − βcs )] = EG[Fas ]ebc(u− s). (27)

5. Anticommuting stochastic integrals

As in the classical case, two kinds of integral of anticommuting stochastic processes will be
useful, those with respect to time and those along (anticommuting) Brownian paths. Before
defining these integrals it is useful to introduce a notation for a decreasing sequence of partitions
of the interval [0, t], t � T . ForN = 1, 2, . . . and fixed t in [0, T ] the set {t [N]

0 , t
[N]

1 , . . . , t
[N]

N } is a
subset of [0, T ] with t [N]

0 = 0, t [N]

0 < · · · < t [N]

N , t [N]

N = t and0t [N] ≡ supr=1...N |t [N]
r − t [N]

r−1| → 0
as N → ∞.

Definition 5.1. The integral with respect to time of an n-dimensional adapted process Ais is
defined (when it exists independent of the choice of decreasing sequence of partitions) to be
the process ∫ t

0
ds Ais := lim

N→∞

N∑
r=1

(t [N]
r − t [N]

r−1)A
i

t
[N]
r−1
. (28)

It is clearly [0, t]-adapted.
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The anticommuting analogue of the Itô integral will now be defined.

Definition 5.2. Suppose that Cias, i = 1, . . . , n, a = 1, . . . , m is an (n × m)-dimensional
adapted process on anticommuting Wiener space. Then the Itô integral of the process is
defined (when it exists independent of the choice of sequence of decreasing partitions) to be∫ t

0
dβas C

i
as := lim

N→∞

N∑
r=1

(βatr − βatr−1
)Ciatr−1

. (29)

It is clearly [0, t]-adapted.

At this stage we do not consider necessary or sufficient conditions on the processes At, Ct for
these integrals to exist; this question is addressed directly for the various processes considered
in applications in later sections.

Definition 5.3. An anticommuting Itô process or anticommuting stochastic integral is a process
of the form

Zit = Zi0 +
∫ t

0
ds Ais +

∫ t

0
dβas C

i
as (30)

where Ais and Cias are [0, s]-adapted processes.

Using (25) and (27) the anticommuting Itô isometry can be proved in close analogy to the
classical case [18].

Proposition 5.4. Suppose that for i = 1, . . . , k

Zit =
∫ t

0
dβas C

i
as

with each Zi of definite Grassmann parity. Then

EG[Zit Z
j
t ] =

∫ t

0
ds EG[(−1)εZi ebaCiasC

j

bs]. (31)

6. Anticommuting stochastic differential equations

In this section the anticommuting analogues of stochastic differential equations will be
considered; these are applied in the final section to give a proof of the Feynman–Kac formula
for a wide class of Hamiltonians. No very general theory is needed; a rather prescriptive
and constructive approach is taken, motivated by the application to path integration. We
simply define a sequence of random variables which satisfy the required stochastic differential
equation.

Theorem 6.1. Suppose that for i = 1, . . . , n and a = 1, . . . , m the functions Ai and Cia
are supersmooth functions on R

0,m
S Suppose also that ζ0 is an element of R

0,m
S . Then there

exists a unique adapted process ζt which satisfies the n-dimensional system of anticommuting
stochastic differential equations

ζ it =µ ζ
i
0 +

∫ t

0
ds Ais(ζs) +

∫ t

0
dβas C

i
as(ζs). (32)
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Outline of proof. To prove existence we construct a solution as the limit of an inductive
process. Let the sequence ζt,k, k = 1, 2, . . . , t ∈ [0, T ] of n-dimensional anticommuting
stochastic processes be defined by

ζ it,0 = ζ i0

ζ it,k+1 = ζ i0 +
∫ t

0
ds Ais(ζs,k) +

∫ t

0
dβas C

i
as(ζs,k).

(33)

Then, using the Itô isometry proposition 5.4, it may be proved by induction that there exists a
positive constant A such that (for any pair of finite subsets {t1, . . . , tr}, {t ′1, . . . , t ′p} of [0, T ]
and corresponding pair of finite sets of multi-indices µ[1], . . . , µ[r], ν[1], . . . , ν[p])

|EG((ζt1,k − ζt1,k−1)
µ[1]
. . . (ζtr ,k − ζtr ,k−1)

µ[r]
ζ ν

[1]

t ′1,k−1
. . . ζ ν

[p]

t ′p,k−1
)|
G

� (A|µ[1]|t)k

k!
· · · (A

|µ[r]|t)k

k!
(A|ν[1]|+ ··· +|ν[p]|)k−1. (34)

This result may be used to show that for each t in [0, T ] and each µ in Mn the sequence
|EG(ζµt,k)|G is Cauchy and hence that ζt,k converges to an anticommuting random variable ζt
satisfying (32).

To prove uniqueness, we suppose that ωt is also a solution to (32). Then, again
by induction over k, it can be shown that there exists a positive constant B such that
ft,k := supµ,ν∈Mn,µ �=∅ |EG(ωµt − ζµt,k)ζ νt,k|G satisfies

0 � ft,k � B

∫ t

0
dsfs,k. (35)

and hence that, for each t in [0, T ], limk→∞ ft,k = 0, so that ωt =µ ζt .
The stochastic differential equation (32) is often written in differential form as

dζ it = dt Ais(ζt ) + dβat C
i
at (ζt ). (36)

In order to exploit solutions to anticommuting stochastic differential equations to gain
information about diffusions, the following Itô formula for stochastic integrals is essential. As
in the classical Itô theorem, there is a second-order term which would not be present in the
deterministic setting.

Theorem 6.2. Let Xit , i = 1, . . . , p + q be a stochastic process on anticommuting Wiener
space with Xi even for i = 1, . . . , p and Xi odd for i = p + 1, . . . , p + q, and with each Xi

having the form

Xit = Xi0 +
∫ t

0
ds Ai(s, ζs) +

∫ t

0
dβas C

i
a(s, ζs) (37)

where ζ j , j = 1, . . . , n′ are solutions to an n′-dimensional system of anticommuting
stochastic differential equations, βt is m-dimensional anticommuting Brownian motion
and the functions Ai, Cia such that there exists a positive constant K for which
|Ai(t, ·)|

G
< K, |Cia(t, ·)|G < K each t in [0, T ]. Then, if F is a supersmooth

function of p even and q odd variables (in the sense that F(Xi) = ∑
µ∈Mq

Fµ(X
1, . . . ,

Xp)Xµ1+p . . . Xµ|µ|+p with each Fµ a smooth function of p even variables which, together with
its first and second and third derivatives, is uniformly bounded) then

F(Xt)d =µ F (X0) +
∫ t

0
dXis∂iF (Xs) + 1

2

∫ t

0
ds (−1)εXi eabCib(Xs)C

j
a (Xs)∂j ∂iF (Xs). (38)
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Outline of proof. For each of the sequence of decreasing partitions of [0, t] we note that

F(Xt)− F(X0) =
N∑
r=1

0Fr (39)

where 0Fr = F(Xt [N]
r
)− F(Xt [N]

r−1
). Now at the N th approximation to the stochastic integrals

Xit we have

0Fr = 0Xir∂iF (Xt [N]
r−1
) + 1

20X
j
r 0X

i
r∂i∂jF (Xt [N]

r−1
) + higher-order terms (40)

where

0Xir = Ai(t [N]

r−1, ζt [N]
r−1
)δt [N]

r + δβa
t

[N]
r
Cia(t

[N]

r−1, ζt [N]
r−1
). (41)

If we now take the kth approximation to ζt we can show by induction, using the
anticommuting Itô isometry, that the only terms in the sum (39) which are of order
(δt [N]

r )
1 are 0Xit ∂iF (Xt [N]

r
) (coming from the first-order terms in the Taylor expansion) and

1
2δt

[N]
r (−1)εXi eabCib(t

[N]

r−1, ζt [N]
r−1
)C

j
a (t

[N]

r−1, ζt [N]
r−1
)∂j ∂iF (Xt [N]

r
) from the second-order term. All

other terms are of higher order in δt [N]
r and thus do not contribute to the sum in the limit

as N tends to infinity.
A simple but useful special case of this theorem is the integration by parts formula

contained in the following corollary.

Corollary 6.3. The differential of the product of two stochastic integrals of the form (37) is
given by the integration by parts formula

d(X1
t X

2
t ) = X1

t dX2
t + dX1

t X
2
t + 1

2 (−1)εX1 eabC1
a (t, ζt )C

2
b (t, ζt ) dt. (42)

An example of the solution of a particular stochastic differential equation will now be described;
the process which solves the equation is the anticommuting analogue of the Ornstein–
Uhlenbeck process.

Example 6.4. Consider the two-dimensional system of anticommuting stochastic differential
equations

ζ it =
∫ t

0
ds(−rζ is ) +

∫ t

0
dβas c

i
a (43)

where i, a = 1, 2 and r, cia are even constants. This may be solved using the same method as
in the standard theory of stochastic calculus, by applying the anticommuting form of the Itô
integration by parts formula to the product ert ζ it , obtaining

ert ζ jt = ζ
j

0 +
∫ t

0
d(ers) ζ js +

∫ t

0
dζ it ers

= ζ
j

0 + rers
∫ t

0
ds ζ js +

∫ t

0
ds (−rζ iers) +

∫ t

0
dβas c

i
ae
rs

= ζ
j

0 +
∫ t

0
dβas c

i
ae
rs (44)

so that

ζ it = ζ i0e−rt + e−rt
∫ t

0
dβas c

i
ae
rs . (45)
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7. The anticommuting Feynman–Kac formula

In this section we prove a Feynman–Kac formula for Hamiltonians which are even, second-
order differential operators on the space F(n) of supersmooth functions of n anticommuting
variables of the form

H = 1
2g
kj ∂j ∂k + iαj∂j + v (46)

where v is an even function in F(n), αi, i = 1, . . . , n are odd functions and gkj = eabckbc
j
a

with ckb, k = 1, . . . , n, b = 1, . . . , m even functions. The approach taken is similar to that used
for conventional, commuting diffusions, as presented for instance in the books of Arnold [19],
Friedman [20] and Øksendal [18].

Theorem 7.1. IfH is a Hamiltonian of the form (46) and t is in [0, T ] then for any F in F(n)
(e−HtF )(ξ) = EG[e− ∫ t

0 ds v(ζs )F (ζt )] (47)

where ζt is the anticommuting diffusion which starts from ξ and satisfies

dζ jt = −i dt αj (ζt ) + dβat c
j
a(ζt ). (48)

Proof. For t ∈ [0, T ] define the operator Ut on F(n) by

UtF (ξ) = EG(e
− ∫ t

0 v(ζs ) dsF (ζt )). (49)

Then, using the Itô formula (38), we find that

UtF (ξ)− F(ξ) =
∫ t

0
ds UsHF(ξ) (50)

so that Ut = exp −Ht as required. �

The first example of the application of this formula that we will consider gives the basic
path integral formula for the flat Hamiltonian.

Example 7.2. Consider the Hamiltonian

H = ∂1∂2 (51)

acting on F(2). Working on two-dimensional anticommuting Wiener space, the corresponding
diffusion is the solution to

dζ at = dβat a = 1, 2 (52)

starting from ξ . This has solution ζt = ξ + βt so that

e−HtF (ξ) = EG[F(ξ + βt )]

=
∫

d2η t exp

(
η1η2

t

)
F(ξ + η)

=
∫

d2η t exp

(
(η1 − ξ 1)(η2 − ξ 2)

t

)
F(η) (53)

simply reflecting the fact that anticommuting Brownian motion is built from the heat kernel of
this very Hamiltonian.

A closely related example gives the basic path integral formula for the flat Hamiltonian with
potential.
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Example 7.3. For the Hamiltonian

H = ∂1∂2 + v (54)

(with v an even function) acting on F(2)
e−HtF (ξ) = EG(e

− ∫ t
0 ds v(ξ+βs)(F (ξ + βt ))). (55)

The next example, which is also two dimensional, concerns the Hamiltonian whose heat
kernel gives the distribution for the anticommuting Ornstein–Uhlenbeck process described in
example 6.4.

Example 7.4. In the case of the Hamiltonian

H = c2∂1∂2 + r(η1∂1 + η2∂2) (56)

we must consider the diffusion ζt starting from ξ and satisfying

dζ at = −rζ at dt + c dβat (57)

so that using (45)

ζ at = ξae−rt + e−rt
∫ t

0
dβas ers . (58)

Applying the Feynman–Kac formula to four functions which form a basis of F(2), that is,
F0(η) = 1, F1(η) = η1, F2(η) = η2 and F12(η) = η1η2, we obtain

exp−Ht F0(ξ) = EG[1] = 1

exp−Ht F1(ξ) = EG

[
ξ 1e−rt + e−rt

∫ t

0
c dβ1

s ers
]

= e−rt ξ 1

exp−Ht F2(ξ) = e−rt ξ 2

exp−Ht F12(ξ) = EG

[(
ξ 1e−rt + e−rt

∫ t

0
c dβ1

s ers
)(
ξ 2e−rt + e−rt

∫ t

0
c dβ2

s ers
)]

= e−2rt ξ 1ξ 2 +
∫ t

0
ds c2e2rse−2rt = e−2rt ξ 1ξ 2 +

c2

2r
(1 − e−2rt )

(59)

so that the heat kernel for this Hamiltonian is

e−Ht (ξ, η) = η1η2 − e−rt (ξ 1η2 + η1ξ 2) +
c2

2r
(1 − e−2rt ) + e−2rt ξ 1ξ 2. (60)

The next example we consider is the anticommuting harmonic oscillator. This is the
fundamental example in BRST quantization in the sense that quantizing a quantum mechanical
system with k momenta constrained to be zero leads to a ghost Hamiltonian with the form of
the 2k-dimensional anticommuting harmonic oscillator [21, 22]. For simplicity we consider
only the two-dimensional case.

Example 7.5. Consider the Hamiltonian

H = ∂1∂2 − η1η2 (61)

which leads to the anticommuting diffusion

ζ at = ξa + βat a = 1, 2. (62)

The anticommuting Feynman–Kac formula for this diffusion is

(e−HtF )(ξ) = EG[e
∫ t

0 ds(ξ 1+β1
s )(ξ

2+β2
s )F (ξ + βt )]. (63)

To evaluate this integral for finite t we will use essentially the same technique as that employed
by Simon in [23]. To achieve this we need to extract the kernel of the time evolution operator
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from this expression, and define the analogue of conditional expectation. Taking the definition
of the expectation with respect to anticommuting Brownian motion (63) becomes (we put
0t := tr − tr−1)

(e−HtF )(η) = lim
N→∞

∫
B

d2η1 · · · d2ηN p(η1,0t)p(η2 − η1,0t) · · ·p(ηN − ηN−1,0t)

× exp

( N−1∑
r=0

0t(η1 + η1
r )(η

2 + η2
r )

)
F(η + ηN). (64)

Making a change of variables ηr �→ η′
r := η + ηr , dropping the primes and replacing ηN by

η′, we obtain

(e−HtF )(η) =
∫

B
dη′ (e−HtF )(η, η′)F (η′) (65)

where

(e−HtF )(η, η′)

= lim
N→∞

∫
B

dη1 · · · dηN−1 p(η1 − η,0t)p(η2 − η1,0t) · · ·p(ηN−1 − ηN−2,0t)

×p(η′ − ηN−1,0t) exp

( N−1∑
r=0

0t η1
r η

2
r

)
= lim

N→∞

∫
B

dη1 · · · dηN−1 p(η1 − η,0t)p(η2 − η1,0t) · · ·p(ηN−1 − ηN−2,0t)

×p(η′ − ηN−1,0t)
p(η − η′, t)
p(η − η′, t)

exp

( N−1∑
r=0

0t η1
r η

2
r

)
:= p(η − η′, t)EG

[
exp

( ∫ t

0
ds ω1

s ω
2
s

)∣∣∣∣ω0 = η, ωt = η′
]

(66)

defining both the process ωt (which will be called pinned anticommuting Brownian motion),
and the conditional expectation operator.

Following Simon, we use the Brownian bridge to represent such pinned Brownian motion
processes. The (two-dimensional) anticommuting Brownian bridge process starting and ending
at 0, over the time interval [0, 1] is defined by

αis := βis − sβi1. (67)

In close analogy with the classical case, it may be confirmed using (25) that this process has
covariance

EG[αisα
j
u] = eij s(1 − u) (68)

for 0 � s � u � 1. This allows us to express ωt as

ωi(s) = ηi
(

1 − s

t

)
+ η′i s

t
+ t1/2αi

( s
t

)
. (69)

Since
∫ t

0 ds f (s/t) = t
∫ 1

0 ds ′ f (s ′), we can restrict our attention to ωs for 0 � s � 1.
We now take the Fourier expansion of α(s),

αis =
∞∑
r=1

�rξ
i
r fr(s) i = 1, 2 (70)
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where �r := (rπ)−1, fr(s) := √
2 sin(rπs) and the ξr are the anticommuting analogue of

independent Gaussian random variables, that is to say, their formal measure is
∞∏
r=1

(d2ξr exp ξ 1
r ξ

2
r ). (71)

It can be confirmed (as in the book of Simon [23] for the classical case) that this Fourier
expansion for the Brownian bridge gives the same covariance as (68) above when expectations
are taken using this formal measure.

Pinned Brownian motion ω(s) thus has the Fourier expansion

ωi(s) =
∞∑
r=1

fr(s)(γ
i
r +

√
t�rξ

i
r ) (72)

where γ ir = √
2�r(ηi + (−1)r+1η′i ). Substituting this into the expression (66) for the kernel of

the time evolution operator we obtain

(e−HtF )(η, η′) = p(η − η′, t)
∫

B

( ∞∏
r=1

d2ξr exp ξ 1
r ξ

2
r

)
× exp

[ ∫ 1

0
ds t

( ∞∑
r=1

fr(s)(γ
1
r +

√
t�rξ

1
r )

)( ∞∑
r=1

fr(s)(γ
2
r +

√
t�rξ

2
r )

)]
= p(η − η′, t)

∫
B

( ∞∏
r=1

dξr exp ξ 1
r ξ

2
r

)
exp

∞∑
r=1

t (γ 1
r +

√
t�rξ

1
r )(γ

2
r +

√
t�rξ

2
r )

= p(η − η′, t)
∫

B

( ∞∏
r=1

dξr exp ξ 1
r ξ

2
r

)
× exp

∞∑
r=1

t2�2
r (γ

1
r t

−1/2�−1
r + ξ 1

r )(γ
2
r t

−1/2�−1
r + ξ 2

r ). (73)

Evaluating the Gaussian integrals we obtain

(e−HtF )(η, η′) = t

∞∏
r=1

(1 + t2�2
r ) exp

[
(η1η2 + η′1η′2)

(
1

t
+

∞∑
r=1

2t�2
r

1 + t2�2
r

)]
× exp

[
(η1η′2 + η′1η2)

(
1

t
+

∞∑
r=1

2(−1)r t�2
r

1 + t2�2
r

)]
. (74)

Using the Weierstrass–Hadamard factorization of sinh x:

sinh x = x

∞∏
r=1

(1 + �2
r x

2) (75)

and the Mittag–Leffler expansions of (sinh x)−1 and coth x:

(sinh x)−1 = 1

x
+

∞∑
r=1

2(−1)rx�2
r

1 + x2�2
r

coth x = 1

x
+

∞∑
r=1

2x�2
r

1 + x2�2
r

(76)

we finally find the kernel for the time evolution operator to be

(e−HtF )(η, η′) = sinh t exp

[
1

sinh t
[(η1η2 + η′1η′2) cosh t − (η1η′2 + η′1η2)]

]
. (77)

Finally we consider an example with quartic fermionic terms.
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Example 7.6. Consider the Hamiltonian

H = (c2 + 2bη1η2)
∂2

∂η2∂η1
. (78)

Following theorem 7.1 we consider the stochastic differential equation

ζ at = ξa +
∫ t

0
dβas

(
a +

b

a
ζ 1
s ζ

2
s

)
. (79)

Without actually solving this equation it can be seen by direct calculation (together with the
anticommuting Itô isometry proposition 5.4) that

EG[1] = 1 EG[ζ at ] = ξa a = 1, 2

EG[ζ 1
t ζ

2
t ] = ξ 1ξ 2e−2bt +

c2

2b
(e−2bt − 1)

(80)

giving the action of e−HT on the four elementary functions 1, η1, η2 and η1η2 to be

exp −Ht[1] = 1 EG[ηat ] = ηa a = 1, 2

EG[η1
t η

2
t ] = η1η2e−2bt +

c2

2b
(e−2bt − 1)

(81)

leading to the expression of the heat kernel as

e−Ht (η, ξ) = δ(η − ξ) +
c2

2b
(e−2bt − 1). (82)
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[10] Applebaum D and Hudson R L 1984 Fermion Itôs formula and stochastic evolution Commun. Math. Phys. 96

473
[11] Hudson R L and Lindsay J M 1985 A noncommutative martingale representation theorem for non-Fock quantum

Brownian motion J. Funct. Anal. 61 202–21
[12] Kupsch J 1987 Measures for fermionic integration Fortschr. Phys. 35 415
[13] Wilde I F, Barnett C and Streater R F 1982 The Ito–Clifford integral J. Funct. Anal. 48 172–212
[14] Wilde I F, Barnett C and Streater R F 1983 The Ito–Clifford integral II—stochastic differential equations J.

Lond. Math. Soc. 27 373–84
[15] Streater R F and Hasagawa H 1983 Stochastic Schrodinger and Heisenberg equations: a martingale problem in

stochastic processes J. Physique AL 16 697–703
[16] Metzler R, Barkai E and Klafter J 1999 Anomalous diffusion and relaxation close to thermal equilibrium: a

fractional Fokker–Planck equation approach Phys. Rev. Lett. 82 3563–7
[17] Rogers A 1980 A global theory of supermanifolds J. Math. Phys. 21 1352–65
[18] Øksendal B 1995 Stochastic Differential Equations 4th edn (Berlin: Springer)
[19] Arnold L 1974 Stochastic Differential Equations: Theory and Applications (New York: Wiley)
[20] Friedman A 1975 Stochastic Differential Equations and Applications vol 1 (New York: Academic)
[21] Henneaux M and Teitelboim C 1992 Quantization of Gauge Systems (Princeton, NJ: Princeton University Press)
[22] Rogers A 2000 Gauge fixing and BFV quantization Class Quantum Grav. 17 389–97
[23] Simon B 1979 Functional Integration and Quantum Mechanics (New York: Academic)


